fVDB : A Deep-Learning Framework for Sparse, Large Scale, and High Performance Spatial Intelligence

Author:

Williams Francis1ORCID,Huang Jiahui2ORCID,Swartz Jonathan3ORCID,Klar Gergely3ORCID,Thakkar Vijay4ORCID,Cong Matthew2ORCID,Ren Xuanchi5ORCID,Li Ruilong67ORCID,Fuji-Tsang Clement5ORCID,Fidler Sanja5ORCID,Sifakis Eftychios89ORCID,Museth Ken10ORCID

Affiliation:

1. NVIDIA Research, Brooklyn, NY, United States of America

2. NVIDIA Research, Santa Clara, CA, United States of America

3. NVIDIA Research, Wellington, New Zealand

4. NVIDIA Research, Atlanta, GA, United States of America

5. NVIDIA Research, Toronto, ON, Canada

6. NVIDIA Research, Berkeley, CA, United States of America

7. University of California Berkeley, Berkeley, CA, United States of America

8. Department of Computer Sciences, University of Wisconsin-Madison, Madison, WI, United States of America

9. NVIDIA Research, Madison, WI, United States of America

10. NVIDIA Research, Los Angeles, CA, United States of America

Abstract

We present f VDB, a novel GPU-optimized framework for deep learning on large-scale 3D data. f VDB provides a complete set of differentiable primitives to build deep learning architectures for common tasks in 3D learning such as convolution, pooling, attention, ray-tracing, meshing, etc. f VDB simultaneously provides a much larger feature set (primitives and operators) than established frameworks with no loss in efficiency: our operators match or exceed the performance of other frameworks with narrower scope. Furthermore, f VDB can process datasets with much larger footprint and spatial resolution than prior works, while providing a competitive memory footprint on small inputs. To achieve this combination of versatility and performance, f VDB relies on a single novel VDB index grid acceleration structure paired with several key innovations including GPU accelerated sparse grid construction, convolution using tensorcores, fast ray tracing kernels using a Hierarchical Digital Differential Analyzer algorithm (HDDA), and jagged tensors. Our framework is fully integrated with PyTorch enabling interoperability with existing pipelines, and we demonstrate its effectiveness on a number of representative tasks such as large-scale point-cloud segmentation, high resolution 3D generative modeling, unbounded scale Neural Radiance Fields, and large-scale point cloud reconstruction.

Publisher

Association for Computing Machinery (ACM)

Reference41 articles.

1. 2023. 3D Karton City model. https://www.turbosquid.com/3d-models/3d-karton-city-2-model-1196110. Accessed: 2023-08-01.

2. Martín Abadi Ashish Agarwal Paul Barham Eugene Brevdo Zhifeng Chen Craig Citro Greg S. Corrado Andy Davis Jeffrey Dean Matthieu Devin Sanjay Ghemawat Ian Goodfellow Andrew Harp Geoffrey Irving Michael Isard Yangqing Jia Rafal Jozefowicz Lukasz Kaiser Manjunath Kudlur Josh Levenberg Dandelion Mané Rajat Monga Sherry Moore Derek Murray Chris Olah Mike Schuster Jonathon Shlens Benoit Steiner Ilya Sutskever Kunal Talwar Paul Tucker Vincent Vanhoucke Vijay Vasudevan Fernanda Viégas Oriol Vinyals Pete Warden Martin Wattenberg Martin Wicke Yuan Yu and Xiaoqiang Zheng. 2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. https://www.tensorflow.org/Software available from tensorflow.org.

3. Academy Software Foundation (ASWF). 2012 -- 2024. OpenVDB. https://www.openvdb.org

4. Mip-NeRF 360: Unbounded Anti-Aliased Neural Radiance Fields

5. Towards 3D LiDAR-based semantic scene understanding of 3D point cloud sequences: The SemanticKITTI Dataset

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3