Privacy-Preserving and Diversity-Aware Trust-based Team Formation in Online Social Networks

Author:

Mahajan Yash1ORCID,Cho Jin-Hee1ORCID,Chen Ing-Ray1ORCID

Affiliation:

1. Virginia Tech, USA

Abstract

As online social networks (OSNs) become more prevalent, a new paradigm for problem-solving through crowd-sourcing has emerged. By leveraging the OSN platforms, users can post a problem to be solved and then form a team to collaborate and solve the problem. A common concern in OSNs is how to form effective collaborative teams, as various tasks are completed through online collaborative networks. A team’s diversity in expertise has received high attention to producing high team performance in developing team formation (TF) algorithms. However, the effect of team diversity on performance under different types of tasks has not been extensively studied. Another important issue is how to balance the need to preserve individuals’ privacy with the need to maximize performance through active collaboration, as these two goals may conflict with each other. This research has not been actively studied in the literature. In this work, we develop a team formation (TF) algorithm in the context of OSNs that can maximize team performance and preserve team members’ privacy under different types of tasks. Our proposed PR iv A cy- D iversity- A ware T eam F ormation framework, called PRADA-TF , is based on trust relationships between users in OSNs where trust is measured based on a user’s expertise and privacy preference levels. The PRADA-TF algorithm considers the team members’ domain expertise, privacy preferences, and the team’s expertise diversity in the process of team formation. Our approach employs game-theoretic principles Mechanism Design to motivate self-interested individuals within a team formation context, positioning the mechanism designer as the pivotal team leader responsible for assembling the team. We use two real-world datasets (i.e., Netscience and IMDb) to generate different semi-synthetic datasets for constructing trust networks using a belief model (i.e., Subjective Logic) and identifying trustworthy users as candidate team members. We evaluate the effectiveness of our proposed PRADA-TF scheme in four variants against three baseline methods in the literature. Our analysis focuses on three performance metrics for studying OSNs: social welfare, privacy loss, and team diversity.

Publisher

Association for Computing Machinery (ACM)

Reference70 articles.

1. Aris Anagnostopoulos Luca Becchetti Carlos Castillo Aristides Gionis and Stefano Leonardi. 2012. Online Team Formation in Social Networks. WWW 839–848.

2. Myriam Bechtoldt, Carsten De Dreu, and Bernard Nijstad. 2007. Team Personality Diversity, Group Creativity, and Innovativeness in Organizational Teams. Available from Internet: http://www.susdiv.org/uploadfiles/RT3.2_PP_Carsten.pdf/ (2007).

3. A Survey on Trust Modeling

4. A Survey on Modeling and Optimizing Multi-Objective Systems

5. Crowdsourcing with Diverse Groups of Users

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3