Affiliation:
1. Algorithms and Complexity Group, Faculty of Informatics, TU Wien, Vienna, Austria
Abstract
Branch decomposition is a prominent method for structurally decomposing a graph, a hypergraph, or a propositional formula in conjunctive normal form. The width of a branch decomposition provides a measure of how well the object is decomposed. For many applications, it is crucial to computing a branch decomposition whose width is as small as possible. We propose an approach based on Boolean Satisfiability (SAT) to finding branch decompositions of small width. The core of our approach is an efficient SAT encoding that determines with a single SAT-call whether a given hypergraph admits a branch decomposition of a certain width. For our encoding, we propose a natural partition-based characterization of branch decompositions. The encoding size imposes a limit on the size of the given hypergraph. To break through this barrier and to scale the SAT approach to larger instances, we develop a new heuristic approach where the SAT encoding is used to locally improve a given candidate decomposition until a fixed-point is reached. This new SAT-based local improvement method scales now to instances with several thousands of vertices and edges.
Publisher
Association for Computing Machinery (ACM)
Subject
Computational Mathematics,Logic,General Computer Science,Theoretical Computer Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献