Affiliation:
1. Indian Institute of Information Technology Manipur, Imphal, Manipur, India
2. Tezpur University, Tezpur, Assam, India
Abstract
Language analysis is very important for the native speaker to connect with the digital world. Assamese is a relatively unexplored language. In this report, we analyze different aspects of speech-to-text processing, starting from building a speech corpus, defining syllable rules, and finally developing a speech search engine of Assamese. We have collected about 20 hours of speech in three (viz., read, extempore, and conversation) modes and transcribed it. We also discuss some issues and challenges faced during development of the corpus. We have developed an automatic syllabification model with 11 rules for the Assamese language and found an accuracy of more than 95% in our result. We found 12 different syllable patterns where 5 are found most frequent. The maximum length of a syllable found is four letters. With the help of Hidden Markov Model Toolkit (HTK) 3.5, we used deep learning based neural network for our speech recognition model, where we obtained 78.05% accuracy for automatic transcription of Assamese speech.
Publisher
Association for Computing Machinery (ACM)
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献