Supervised pretraining through contrastive categorical positive samplings to improve COVID-19 mortality prediction
Author:
Affiliation:
1. Weill Cornell Medicine
2. Icahn School of Medicine at Mount Sinai
3. Indiana University
4. University of Texus Austin
Funder
National Library of Medicine
Publisher
ACM
Link
https://dl.acm.org/doi/pdf/10.1145/3535508.3545541
Reference29 articles.
1. Personalized Risk Scoring for Critical Care Prognosis Using Mixtures of Gaussian Processes
2. Using methods from the data-mining and machine-learning literature for disease classification and prediction: a case study examining classification of heart failure subtypes
3. Longitudinal respiratory subphenotypes in patients with COVID-19-related acute respiratory distress syndrome: results from three observational cohorts
4. Utilization of Deep Learning for Subphenotype Identification in Sepsis-Associated Acute Kidney Injury
5. Mayee F Chen , Daniel Y Fu , Avanika Narayan , Michael Zhang , Zhao Song , Kayvon Fatahalian , and Christopher Ré . 2022 . Perfectly Balanced: Improving Transfer and Robustness of Supervised Contrastive Learning. arXiv preprint arXiv:2204.07596 (2022). Mayee F Chen, Daniel Y Fu, Avanika Narayan, Michael Zhang, Zhao Song, Kayvon Fatahalian, and Christopher Ré. 2022. Perfectly Balanced: Improving Transfer and Robustness of Supervised Contrastive Learning. arXiv preprint arXiv:2204.07596 (2022).
Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Contrastive dissimilarity: optimizing performance on imbalanced and limited data sets;Neural Computing and Applications;2024-08-12
2. The Role and Applications of Artificial Intelligence in the Treatment of Chronic Pain;Current Pain and Headache Reports;2024-06-01
3. Advances in the Development of Representation Learning and Its Innovations against COVID-19;COVID;2023-09-13
4. Optimizing Embedding Space with Sub-categorical Supervised Pre-training: A Theoretical Approach Towards Improving Sepsis Prediction;2023 IEEE 11th International Conference on Healthcare Informatics (ICHI);2023-06-26
5. Artificial intelligence-driven prediction of COVID-19-related hospitalization and death: a systematic review;Frontiers in Public Health;2023-06-20
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3