Multi-Class Latent Concept Pooling for Computer-Aided Endoscopy Diagnosis

Author:

Wang Shuai1ORCID,Cong Yang2,Fan Huijie2,Fan Baojie3,Liu Lianqing2,Yang Yunsheng4,Tang Yandong2,Zhao Huaici2,Yu Haibin2

Affiliation:

1. State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences and University of Chinese Academy of Sciences, Shenyang, China

2. State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China

3. College of Automation, Nanjing University of Posts and Telecommunications, Nanjing, China

4. Chinese PLA General Hospital, Beijing, China

Abstract

Successful computer-aided diagnosis systems typically rely on training datasets containing sufficient and richly annotated images. However, detailed image annotation is often time consuming and subjective, especially for medical images, which becomes the bottleneck for the collection of large datasets and then building computer-aided diagnosis systems. In this article, we design a novel computer-aided endoscopy diagnosis system to deal with the multi-classification problem of electronic endoscopy medical records (EEMRs) containing sets of frames, while labels of EEMRs can be mined from the corresponding text records using an automatic text-matching strategy without human special labeling. With unambiguous EEMR labels and ambiguous frame labels, we propose a simple but effective pooling scheme called Multi-class Latent Concept Pooling, which learns a codebook from EEMRs with different classes step by step and encodes EEMRs based on a soft weighting strategy. In our method, a computer-aided diagnosis system can be extended to new unseen classes with ease and applied to the standard single-instance classification problem even though detailed annotated images are unavailable. In order to validate our system, we collect 1,889 EEMRs with more than 59K frames and successfully mine labels for 348 of them. The experimental results show that our proposed system significantly outperforms the state-of-the-art methods. Moreover, we apply the learned latent concept codebook to detect the abnormalities in endoscopy images and compare it with a supervised learning classifier, and the evaluation shows that our codebook learning method can effectively extract the true prototypes related to different classes from the ambiguous data.

Funder

NSFC

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3