Lifetime Reliability Enhancement of Microprocessors

Author:

Hong Hyejeong1,Lim Jaeil1,Lim Hyunyul1,Kang Sungho1

Affiliation:

1. Yonsei University, Seoul, Korea

Abstract

Ensuring lifetime reliability of microprocessors has become more critical. Continuous scaling and increasing temperatures due to growing power density are threatening lifetime reliability. Negative bias temperature instability (NBTI) has been known for decades, but its impact has been insignificant compared to other factors. Aggressive scaling, however, makes NBTI the most serious threat to chip lifetime reliability in today's and future process technologies. The delay of microprocessors gradually increases as time goes by, due to stress and recovery phases. The delay eventually becomes higher than the value required to meet design constraints, which results in failed systems. In this article, the mechanism of NBTI and its effects on lifetime reliability are presented, then various techniques to mitigate NBTI degradation on microprocessors are introduced. The mitigation can be addressed at either the circuit level or architectural level. Circuit-level techniques include design-time techniques such as transistor sizing and NBTI-aware synthesis. Forward body biasing, and adaptive voltage scaling are adaptive techniques that can mitigate NBTI degradation at the circuit level by controlling the threshold voltage or supply voltage to hide the lengthened delay caused by NBTI degradation. Reliability has been regarded as something to be addressed by chip manufacturers. However, there are recent attempts to bring lifetime reliability problems to the architectural level. Architectural techniques can reduce the cost added by circuit-level techniques, which are based on the worst-case degradation estimation. Traditional low-power and thermal management techniques can be successfully extended to deal with reliability problems since aging is dependent on power consumption and temperature. Self-repair is another option to enhance the lifetime of microprocessors using either core-level or lower-level redundancy. With a growing thermal crisis and constant scaling, lifetime reliability requires more intensive research in conjunction with other design issues.

Funder

National Research Foundation of Korea

Korean government

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science,Theoretical Computer Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3