Discrete Derivatives of Vector Fields on Surfaces -- An Operator Approach

Author:

Azencot Omri1,Ovsjanikov Maks2,Chazal Frédéric3,Ben-Chen Mirela1

Affiliation:

1. Technion-Israel Institute of Technology, Haifa, Israel

2. LIX, École Polytechnique, Palaiseau Cedex, France

3. Geometrica, INRIA, France

Abstract

Vector fields on surfaces are fundamental in various applications in computer graphics and geometry processing. In many cases, in addition to representing vector fields, the need arises to compute their derivatives , for example, for solving partial differential equations on surfaces or for designing vector fields with prescribed smoothness properties. In this work, we consider the problem of computing the Levi-Civita covariant derivative , that is, the tangential component of the standard directional derivative, on triangle meshes. This problem is challenging since, formally, tangent vector fields on polygonal meshes are often viewed as being discontinuous, hence it is not obvious what a good derivative formulation would be. We leverage the relationship between the Levi-Civita covariant derivative of a vector field and the directional derivative of its component functions to provide a simple, easy-to-implement discretization for which we demonstrate experimental convergence. In addition, we introduce two linear which provide access to additional constructs in Riemannian geometry that are not easy to discretize otherwise, including the parallel transport operator which can be seen simply as a certain matrix exponential. Finally, we show the applicability of our operator to various tasks, such as fluid simulation on curved surfaces and vector field design, by posing algebraic constraints on the covariant derivative operator.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3