On Resource Pooling and Separation for LRU Caching

Author:

Tan Jian1,Quan Guocong1,Ji Kaiyi1,Shroff Ness1

Affiliation:

1. The Ohio State University, Columbus, USA

Abstract

Caching systems using the Least Recently Used (LRU) principle have now become ubiquitous. A fundamental question for these systems is whether the cache space should be pooled together or divided to serve multiple flows of data item requests in order to minimize the miss probabilities. In this paper, we show that there is no straight yes or no answer to this question, depending on complex combinations of critical factors, including, e.g., request rates, overlapped data items across different request flows, data item popularities and their sizes. To this end, we characterize the performance of multiple flows of data item requests under resource pooling and separation for LRU caching when the cache size is large. Analytically, we show that it is asymptotically optimal to jointly serve multiple flows if their data item sizes and popularity distributions are similar and their arrival rates do not differ significantly; the self-organizing property of LRU caching automatically optimizes the resource allocation among them asymptotically. Otherwise, separating these flows could be better, e.g., when data sizes vary significantly. We also quantify critical points beyond which resource pooling is better than separation for each of the flows when the overlapped data items exceed certain levels. Technically, for a broad class of heavy-tailed distributions we derive the asymptotic miss probabilities of multiple flows of requests with varying data item sizes in a shared LRU cache space. It also validates the characteristic time approximation under certain conditions. These results provide new insights on improving the performance of caching systems.

Funder

NSF

Publisher

Association for Computing Machinery (ACM)

Subject

General Medicine

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Offline and Online Algorithms for Cache Allocation with Monte Carlo Tree Search and a Learned Model;2023 IEEE 41st International Conference on Computer Design (ICCD);2023-11-06

2. A Lightweight and Adaptive Cache Allocation Scheme for Content Delivery Networks;2023 Design, Automation & Test in Europe Conference & Exhibition (DATE);2023-04

3. SA-LSM;Proceedings of the VLDB Endowment;2022-06

4. A New Flexible Multi-flow LRU Cache Management Paradigm for Minimizing Misses;Proceedings of the ACM on Measurement and Analysis of Computing Systems;2019-06-19

5. A New Flexible Multi-flow LRU Cache Management Paradigm for Minimizing Misses;P ACM MEAS ANAL COMP;2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3