Improving Robustness in IoT Malware Detection through Execution Order Analysis

Author:

Lin Gao-Yu1ORCID,Wang Po-Yuan2ORCID,Cheng Shin-Ming2ORCID,Lee Hahn-Ming2ORCID

Affiliation:

1. Department of Computer Science and Information Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan

2. National Taiwan University of Science and Technology, Taipei Taiwan

Abstract

The rapid expansion of the Internet of Things (IoT) has significantly increased the prevalence of malware targeting IoT devices. Although machine learning models offer promising solutions for automatic malware detection, they are increasingly vulnerable to adversarial attacks. These attacks exploit the model’s feedback loop to iteratively refine malware, producing adversarial samples that evade detection. As such, enhancing the robustness of these models is of paramount importance. Our research introduces a novel approach to bolster malware detection by retaining additional semantic information within the execution order analysis of malware programs. The method significantly improves the resilience of detection models against adversarial samples and implements two adversarial attack methods to rigorously test our model’s robustness by generating authentic adversarial examples for validation. We highlight the critical impact of preserving semantic integrity in malware detection and present a solution to counteract the growing threat of adversarial attacks in IoT environments.

Publisher

Association for Computing Machinery (ACM)

Reference35 articles.

1. [n. d.]. Angr. Accessed Oct 9 2023. https://angr.io/

2. [n. d.]. Execution Order Analysis Dataset. https://gitlab.com/Gao-Yu/execution-order-analysis-dataset

3. [n. d.]. Malware AV-TEST. Accessed Jan 5 2024. https://www.av-test.org/en/statistics/malware/

4. [n. d.]. VirusTotal. Accessed Jan 2 2024. https://www.virustotal.com/gui/intelligence-overview

5. Haisal Dauda Abubakar, Mahmood Umar, and Muhammad Abdullahi Bakale. 2022. Sentiment classification: Review of text vectorization methods: Bag of words, Tf-Idf, Word2vec and Doc2vec. SLU Journal of Science and Technology 4 (July 2022), 27–33.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3