Falcon

Author:

Cheramangalath Unnikrishnan1,Nasre Rupesh2,Srikant Y. N.1

Affiliation:

1. Department of CSA, Indian Institute of Science, Bangalore, India

2. Department of CSE, Indian Institute of Technology, Madras, India

Abstract

Graph algorithms have been shown to possess enough parallelism to keep several computing resources busy—even hundreds of cores on a GPU. Unfortunately, tuning their implementation for efficient execution on a particular hardware configuration of heterogeneous systems consisting of multicore CPUs and GPUs is challenging, time consuming, and error prone. To address these issues, we propose a domain-specific language (DSL), Falcon, for implementing graph algorithms that (i) abstracts the hardware, (ii) provides constructs to write explicitly parallel programs at a higher level, and (iii) can work with general algorithms that may change the graph structure (morph algorithms). We illustrate the usage of our DSL to implement local computation algorithms (that do not change the graph structure) and morph algorithms such as Delaunay mesh refinement, survey propagation, and dynamic SSSP on GPU and multicore CPUs. Using a set of benchmark graphs, we illustrate that the generated code performs close to the state-of-the-art hand-tuned implementations.

Funder

IMPECS project of DST

MPI-SWS

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Information Systems,Software

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Multi-target, Multi-paradigm DSL Compiler for Algorithmic Graph Processing;Proceedings of the 15th ACM SIGPLAN International Conference on Software Language Engineering;2022-11-29

2. iTurboGraph;Proceedings of the 2021 International Conference on Management of Data;2021-06-09

3. Custom code generation for a graph DSL;Proceedings of the 13th Annual Workshop on General Purpose Processing using Graphics Processing Unit;2020-02-19

4. Distributed Graph Analytics;Distributed Computing and Internet Technology;2019-12-09

5. HyPar: A divide-and-conquer model for hybrid CPU–GPU graph processing;Journal of Parallel and Distributed Computing;2019-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3