Unconventional Parallelization of Nondeterministic Applications

Author:

Deiana Enrico A.1,St-Amour Vincent1,Dinda Peter A.1,Hardavellas Nikos1,Campanoni Simone1

Affiliation:

1. Northwestern University, Evanston, IL, USA

Abstract

The demand for thread-level-parallelism (TLP) on commodity processors is endless as it is essential for gaining performance and saving energy. However, TLP in today's programs is limited by dependences that must be satisfied at run time. We have found that for nondeterministic programs, some of these actual dependences can be satisfied with alternative data that can be generated in parallel, thus boosting the program's TLP. Satisfying these dependences with alternative data nonetheless produces final outputs that match those of the original nondeterministic program. To demonstrate the practicality of our technique, we describe the design, implementation, and evaluation of our compilers, autotuner, profiler, and runtime, which are enabled by our proposed C++ programming language extensions. The resulting system boosts the performance of six well-known nondeterministic and multi-threaded benchmarks by 158.2% (geometric mean) on a 28-core Intel-based platform.

Funder

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3