StrongBox

Author:

Dickens III Bernard1,Gunawi Haryadi S.1,Feldman Ariel J.1,Hoffmann Henry1

Affiliation:

1. University of Chicago, Chicago, IL, USA

Abstract

Full-drive encryption (FDE) is especially important for mobile devices because they contain large quantities of sensitive data yet are easily lost or stolen. Unfortunately, the standard approach to FDE-the AES block cipher in XTS mode-is 3--5× slower than unencrypted storage. Authenticated encryption based on stream ciphers is already used as a faster alternative to AES in other contexts, such as HTTPS, but the conventional wisdom is that stream ciphers are unsuitable for FDE. Used naively in drive encryption, stream ciphers are vulnerable to attacks, and mitigating these attacks with on-drive metadata is generally believed to ruin performance. In this paper, we argue that recent developments in mobile hardware invalidate this assumption, making it possible to use fast stream ciphers for FDE. Modern mobile devices employ solid-state storage with Flash Translation Layers (FTL), which operate similarly to Log-structured File Systems (LFS). They also include trusted hardware such as Trusted Execution Environments (TEEs) and secure storage areas. Leveraging these two trends, we propose StrongBox, a stream cipher-based FDE layer that is a drop-in replacement for dm-crypt, the standard Linux FDE module based on AES-XTS. StrongBox introduces a system design and on-drive data structures that exploit LFS»s lack of overwrites to avoid costly rekeying and a counter stored in trusted hardware to protect against attacks. We implement StrongBox on an ARM big.LITTLE mobile processor and test its performance under multiple popular production LFSes. We find that StrongBox improves read performance by as much as 2.36× (1.72× on average) while offering stronger integrity guarantees.

Funder

NSF

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. CRISP: Confidentiality, Rollback, and Integrity Storage Protection for Confidential Cloud-Native Computing;2024 IEEE 17th International Conference on Cloud Computing (CLOUD);2024-07-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3