Affiliation:
1. The University of Edinburgh, Edinburgh, United Kingdom
2. University of Glasgow, Glasgow, United Kingdom
Abstract
Heterogeneous accelerators often disappoint. They provide the prospect of great performance, but only deliver it when using vendor specific optimized libraries or domain specific languages. This requires considerable legacy code modifications, hindering the adoption of heterogeneous computing. This paper develops a novel approach to automatically detect opportunities for accelerator exploitation. We focus on calculations that are well supported by established APIs: sparse and dense linear algebra, stencil codes and generalized reductions and histograms. We call them idioms and use a custom constraint-based Idiom Description Language (IDL) to discover them within user code. Detected idioms are then mapped to BLAS libraries, cuSPARSE and clSPARSE and two DSLs: Halide and Lift. We implemented the approach in LLVM and evaluated it on the NAS and Parboil sequential C/C++ benchmarks, where we detect 60 idiom instances. In those cases where idioms are a significant part of the sequential execution time, we generate code that achieves 1.26x to over 20x speedup on integrated and external GPUs.
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Graphics and Computer-Aided Design,Software
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献