vbench

Author:

Lottarini Andrea1,Ramirez Alex2,Coburn Joel2,Kim Martha A.1,Ranganathan Parthasarathy2,Stodolsky Daniel2,Wachsler Mark2

Affiliation:

1. Columbia University, New York, NY, USA

2. Google, MOUNTAIN VIEW, CA, USA

Abstract

This paper presents vbench, a publicly available benchmark for cloud video services. We are the first study, to the best of our knowledge, to characterize the emerging video-as-a-service workload. Unlike prior video processing benchmarks, vbench's videos are algorithmically selected to represent a large commercial corpus of millions of videos. Reflecting the complex infrastructure that processes and hosts these videos, vbench includes carefully constructed metrics and baselines. The combination of validated corpus, baselines, and metrics reveal nuanced tradeoffs between speed, quality, and compression. We demonstrate the importance of video selection with a microarchitectural study of cache, branch, and SIMD behavior. vbench reveals trends from the commercial corpus that are not visible in other video corpuses. Our experiments with GPUs under vbench's scoring scenarios reveal that context is critical: GPUs are well suited for live-streaming, while for video-on-demand shift costs from compute to storage and network. Counterintuitively, they are not viable for popular videos, for which highly compressed, high quality copies are required. We instead find that popular videos are currently well-served by the current trajectory of software encoders.

Funder

NSF

SRC

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Governing Rules: Modeling and Analysis of Task Offloading Processes in the Fog;Encountering Mobile Data Dynamics in Heterogeneous Wireless Networks;2024

2. Do Video Encoding Workloads Stress the Microarchitecture?;2023 IEEE International Symposium on Workload Characterization (IISWC);2023-10-01

3. Remedy or Resource Drain: Modeling and Analysis of Massive Task Offloading Processes in Fog;IEEE Internet of Things Journal;2023-07-01

4. M2VT: A Multi-Output Encoder Accelerator for Multiple-Way Video Transcoding;Proceedings of the Great Lakes Symposium on VLSI 2023;2023-06-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3