Affiliation:
1. University of Utah, Salt Lake City, UT, USA
Abstract
Intel's SGX offers state-of-the-art security features, including confidentiality, integrity, and authentication (CIA) when accessing sensitive pages in memory. Sensitive pages are placed in an Enclave Page Cache (EPC) within the physical memory before they can be accessed by the processor. To control the overheads imposed by CIA guarantees, the EPC operates with a limited capacity (currently 128 MB). Because of this limited EPC size, sensitive pages must be frequently swapped between EPC and non-EPC regions in memory. A page swap is expensive (about 40K cycles) because it requires an OS system call, page copying, updates to integrity trees and metadata, etc. Our analysis shows that the paging overhead can slow the system on average by 5×, and other studies have reported even higher slowdowns for memory-intensive workloads. The paging overhead can be reduced by growing the size of the EPC to match the size of physical memory, while allowing the EPC to also accommodate non-sensitive pages. However, at least two important problems must be addressed to enable this growth in EPC: (i) the depth of the integrity tree and its cacheability must be improved to keep memory bandwidth overheads in check, (ii) the space overheads of integrity verification (tree and MACs) must be reduced. We achieve both goals by introducing a variable arity unified tree (VAULT) organization that is more compact and has lower depth. We further reduce the space overheads with techniques that combine MAC sharing and compression. With simulations, we show that the combination of our techniques can address most inefficiencies in SGX memory access and improve overall performance by 3.7×, relative to an SGX baseline, while incurring a memory capacity over-head of only 4.7%.
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Graphics and Computer-Aided Design,Software
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. MetaLeak: Uncovering Side Channels in Secure Processor Architectures Exploiting Metadata;2024 ACM/IEEE 51st Annual International Symposium on Computer Architecture (ISCA);2024-06-29
2. Baobab Merkle Tree for Efficient Secure Memory;IEEE Computer Architecture Letters;2024-01
3. Toward an SGX-Friendly Java Runtime;IEEE Transactions on Computers;2024-01
4. Root Crash Consistency of SGX-style Integrity Trees in Secure Non-Volatile Memory Systems;2023 IEEE International Symposium on High-Performance Computer Architecture (HPCA);2023-02
5. Predicate Private Set Intersection with Linear Complexity;Applied Cryptography and Network Security;2023