SOFRITAS

Author:

DeLozier Christian1,Eizenberg Ariel1,Lucia Brandon2,Devietti Joseph1

Affiliation:

1. University of Pennsylvania, Philadelphia, PA, USA

2. Carnegie Mellon University, Pittsburgh, PA, USA

Abstract

Correctly synchronizing multithreaded programs is challenging and errors can lead to program failures such as atomicity violations. Existing strong memory consistency models rule out some possible failures, but are limited by depending on programmer-defined locking code. We present the new Ordering-Free Region (OFR) serializability consistency model that ensures atomicity for OFRs, which are spans of dynamic instructions between consecutive ordering constructs (e.g., barriers), without breaking atomicity at lock operations. Our platform, Serializable Ordering-Free Regions for Increasing Thread Atomicity Scalably (SOFRITAS), ensures a C/C++ program's execution is equivalent to a serialization of OFRs by default. We build two systems that realize the SOFRITAS idea: a concurrency bug finding tool for testing called SOFRITEST, and a production runtime system called SOPRO. SOFRITEST uses OFRs to find concurrency bugs, including a multi-critical-section atomicity violation in memcached that weaker consistency models will miss. If OFR's are too coarse-grained, SOFRITEST suggests refinement annotations automatically. Our software-only SOPRO implementation has high performance, scales well with increased parallelism, and prevents failures despite bugs in locking code. SOFRITAS has an average overhead of just 1.59x on a single-threaded execution and 1.51x on sixteen threads, despite pthreads' much weaker memory model.

Funder

NSF

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Reference57 articles.

1. Overcoming the data-flow limit on parallelism with structural approximation;Balaji V.;WAX,2016

2. CoreDet

3. Valor: efficient, software-only region conflict exceptions

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dynamic Analysis Method for Concurrency Bugs in Multi-process/Multi-thread Environments;International Journal of Parallel Programming;2020-05-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3