Darwin

Author:

Turakhia Yatish1,Bejerano Gill1,Dally William J.2

Affiliation:

1. Stanford University, Stanford, CA, USA

2. Stanford University, NVIDIA Research, Stanford, CA, USA

Abstract

Genomics is transforming medicine and our understanding of life in fundamental ways. Genomics data, however, is far outpacing Moore»s Law. Third-generation sequencing technologies produce 100X longer reads than second generation technologies and reveal a much broader mutation spectrum of disease and evolution. However, these technologies incur prohibitively high computational costs. Over 1,300 CPU hours are required for reference-guided assembly of the human genome, and over 15,600 CPU hours are required for de novo assembly. This paper describes "Darwin" --- a co-processor for genomic sequence alignment that, without sacrificing sensitivity, provides up to $15,000X speedup over the state-of-the-art software for reference-guided assembly of third-generation reads. Darwin achieves this speedup through hardware/algorithm co-design, trading more easily accelerated alignment for less memory-intensive filtering, and by optimizing the memory system for filtering. Darwin combines a hardware-accelerated version of D-SOFT, a novel filtering algorithm, alignment at high speed, and with a hardware-accelerated version of GACT, a novel alignment algorithm. GACT generates near-optimal alignments of arbitrarily long genomic sequences using constant memory for the compute-intensive step. Darwin is adaptable, with tunable speed and sensitivity to match emerging sequencing technologies and to meet the requirements of genomic applications beyond read assembly.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Reference83 articles.

1. Pico computing product brief: M-505-k325t. URL https://goo.gl/poeWUA. Pico computing product brief: M-505-k325t. URL https://goo.gl/poeWUA.

2. TimeLogic Corporation. URL http://www.timelogic.com. TimeLogic Corporation. URL http://www.timelogic.com.

3. Ultraconserved Elements in the Human Genome

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. GenArchBench: A genomics benchmark suite for arm HPC processors;Future Generation Computer Systems;2024-08

2. MegIS: High-Performance, Energy-Efficient, and Low-Cost Metagenomic Analysis with In-Storage Processing;2024 ACM/IEEE 51st Annual International Symposium on Computer Architecture (ISCA);2024-06-29

3. QUETZAL: Vector Acceleration Framework for Modern Genome Sequence Analysis Algorithms;2024 ACM/IEEE 51st Annual International Symposium on Computer Architecture (ISCA);2024-06-29

4. Harp: Leveraging Quasi-Sequential Characteristics to Accelerate Sequence-to-Graph Mapping of Long Reads;Proceedings of the 29th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 3;2024-04-27

5. Data Motion Acceleration: Chaining Cross-Domain Multi Accelerators;2024 IEEE International Symposium on High-Performance Computer Architecture (HPCA);2024-03-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3