Higher-order term indexing using substitution trees

Author:

Pientka Brigitte1

Affiliation:

1. McGill University, Quebec, Canada

Abstract

We present a higher-order term indexing strategy based on substitution trees for simply typed lambda-terms. There are mainly two problems in adapting first-order indexing techniques. First, many operations used in building an efficient term index and retrieving a set of candidate terms from a large collection are undecidable in general for higher-order terms. Second, the scoping of variables and binders in the higher-order case presents challenges. The approach taken in this article is to reduce the problem to indexing linear higher-order patterns, a decidable fragment of higher-order terms, and delay solving terms outside of this fragment. We present insertion of terms into the index based on computing the most specific linear generalization of two linear higher-order patterns, and retrieval based on matching two linear higher-order patterns. Our theoretical framework maintains that terms are in βη-normal form, thereby eliminating the need to renormalize and raise terms during insertion and retrieval. Finally, we prove correctness of our presented algorithms. This indexing structure is implemented as part of the Twelf system to speed up the execution of the tabled higher-logic programming interpreter.

Publisher

Association for Computing Machinery (ACM)

Subject

Computational Mathematics,Logic,General Computer Science,Theoretical Computer Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Equivalence by Canonicalization for Synthesis-Backed Refactoring;Proceedings of the ACM on Programming Languages;2024-06-20

2. One or Nothing: Anti-unification over the Simply-Typed Lambda Calculus;ACM Transactions on Computational Logic;2024-06-17

3. Equational Anti-unification over Absorption Theories;Lecture Notes in Computer Science;2024

4. A Low-Level Index for Distributed Logic Programming;Electronic Proceedings in Theoretical Computer Science;2020-09-19

5. Higher-order pattern generalization modulo equational theories;Mathematical Structures in Computer Science;2020-05-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3