Affiliation:
1. Northwestern Polytechnical University, Xi'an, P.R. China
2. Microsoft Corporation
3. Northwestern Polytechnical University, P.R. China
Abstract
In recent years, with the development of deep learning, text-generation technology has undergone great changes and provided many kinds of services for human beings, such as restaurant reservation and daily communication. The automatically generated text is becoming more and more fluent so researchers begin to consider more anthropomorphic text-generation technology, that is, the conditional text generation, including emotional text generation, personalized text generation, and so on. Conditional Text Generation (CTG) has thus become a research hotspot. As a promising research field, we find that much attention has been paid to exploring it. Therefore, we aim to give a comprehensive review of the new research trends of CTG. We first summarize several key techniques and illustrate the technical evolution route in the field of neural text generation, based on the concept model of CTG. We further make an investigation of existing CTG fields and propose several general learning models for CTG. Finally, we discuss the open issues and promising research directions of CTG.
Funder
National Science Fund for Distinguished Young Scholars
National Natural Science Foundation of China
Publisher
Association for Computing Machinery (ACM)
Subject
Artificial Intelligence,Theoretical Computer Science
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献