Fake News Early Detection

Author:

Zhou Xinyi1ORCID,Jain Atishay1,Phoha Vir V.1ORCID,Zafarani Reza1

Affiliation:

1. Syracuse University, Syracuse, NY, USA

Abstract

Massive dissemination of fake news and its potential to erode democracy has increased the demand for accurate fake news detection. Recent advancements in this area have proposed novel techniques that aim to detect fake news by exploring how it propagates on social networks. Nevertheless, to detect fake news at an early stage, i.e., when it is published on a news outlet but not yet spread on social media, one cannot rely on news propagation information as it does not exist. Hence, there is a strong need to develop approaches that can detect fake news by focusing on news content. In this article, a theory-driven model is proposed for fake news detection. The method investigates news content at various levels: lexicon-level, syntax-level, semantic-level, and discourse-level. We represent news at each level, relying on well-established theories in social and forensic psychology. Fake news detection is then conducted within a supervised machine learning framework. As an interdisciplinary research, our work explores potential fake news patterns, enhances the interpretability in fake news feature engineering, and studies the relationships among fake news, deception/disinformation, and clickbaits. Experiments conducted on two real-world datasets indicate the proposed method can outperform the state-of-the-art and enable fake news early detection when there is limited content information.

Publisher

Association for Computing Machinery (ACM)

Subject

General Medicine

Cited by 154 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3