Truthful Mechanisms with Implicit Payment Computation

Author:

Babaioff Moshe1,Kleinberg Robert D.2,Slivkins Aleksandrs3

Affiliation:

1. Microsoft Research, Herzliya, Israel

2. Cornell University, Ithaca, NY

3. Microsoft Research, Avenue of the Americas, New York, NY

Abstract

It is widely believed that computing payments needed to induce truthful bidding is somehow harder than simply computing the allocation. We show that the opposite is true: creating a randomized truthful mechanism is essentially as easy as a single call to a monotone allocation rule. Our main result is a general procedure to take a monotone allocation rule for a single-parameter domain and transform it (via a black-box reduction) into a randomized mechanism that is truthful in expectation and individually rational for every realization. The mechanism implements the same outcome as the original allocation rule with probability arbitrarily close to 1, and requires evaluating that allocation rule only once. We also provide an extension of this result to multiparameter domains and cycle-monotone allocation rules, under mild star-convexity and nonnegativity hypotheses on the type space and allocation rule, respectively. Because our reduction is simple, versatile, and general, it has many applications to mechanism design problems in which re-evaluating the allocation rule is either burdensome or informationally impossible. Applying our result to the multiarmed bandit problem, we obtain truthful randomized mechanisms whose regret matches the information-theoretic lower bound up to logarithmic factors, even though prior work showed this is impossible for truthful deterministic mechanisms. We also present applications to offline mechanism design, showing that randomization can circumvent a communication complexity lower bound for deterministic payments computation, and that it can also be used to create truthful shortest path auctions that approximate the welfare of the VCG allocation arbitrarily well, while having the same running time complexity as Dijkstra's algorithm.

Funder

Alfred P. Sloan Foundation Fellowship

Microsoft Research New Faculty Fellowship

NSF

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Hardware and Architecture,Information Systems,Control and Systems Engineering,Software

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exploration and Incentives in Reinforcement Learning;Operations Research;2023-08-18

2. Fast Core Pricing for Rich Advertising Auctions;Operations Research;2022-01

3. Bayesian Exploration: Incentivizing Exploration in Bayesian Games;Operations Research;2021-12-29

4. Exponential communication separations between notions of selfishness;Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing;2021-06-15

5. The communication complexity of payment computation;Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing;2021-06-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3