Policy Adaptation in Hierarchical Attribute-based Access Control Systems

Author:

Das Saptarshi1,Sural Shamik1ORCID,Vaidya Jaideep2ORCID,Atluri Vijayalakshmi2

Affiliation:

1. Indian Institute of Technology Kharagpur, West Bengal, India

2. Rutgers Business School, NJ, USA

Abstract

In Attribute-Based Access Control (ABAC), access to resources is given based on the attributes of subjects, objects, and environment. There is an imminent need for the development of efficient algorithms that enable migration to ABAC. However, existing policy mining approaches do not consider possible adaptation to the policy of a similar organization. In this article, we address the problem of automatically determining an optimal assignment of attribute values to subjects for enabling the desired accesses to be granted while minimizing the number of ABAC rules used by each subject or other appropriate metrics. We show the problem to be NP-Complete and propose a heuristic solution.

Funder

National Institute of General Medical Sciences

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ontology-based Evaluation of ABAC Policies for Inter-Organizational Resource Sharing;Proceedings of the 9th ACM International Workshop on Security and Privacy Analytics;2023-04-24

2. A Dynamic Trust-Based Access Control for Multi-domain Cloud Systems;Lecture Notes in Electrical Engineering;2023

3. PAMMELA: Policy Administration Methodology using Machine Learning;Proceedings of the 19th International Conference on Security and Cryptography;2022

4. Hierarchical mining algorithm for high dimensional spatiotemporal big data based on association rules;E3S Web of Conferences;2021

5. A permission‐combination scalable access control model for Internet of things;Transactions on Emerging Telecommunications Technologies;2020-08-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3