The effectiveness of flow analysis for inlining

Author:

Ashley J. Michael1

Affiliation:

1. University of Kansas, Snow Hall 415, Lawrence, Kansas

Abstract

An interprocedural flow analysis can justify inlining in higher-order languages. In principle, more inlining can be performed as analysis accuracy improves. This paper compares four flow analyses to determine how effectively they justify inlining in practice. The paper makes two contributions. First, the relative merits of the flow analyses are measured with all other variables held constant. The four analyses include two monovariant and two polyvariant analyses that cover a wide range of the accuracy/cost spectrum. Our measurements show that the effectiveness of the inliner improves slightly as analysis accuracy improves, but the improvement is offset by the compile-time cost of the accurate analyses. The second contribution is an improvement to the previously reported inlining algorithm used in our experiments. The improvement causes flow information provided by a polyvariant analysis to be selectively merged. By merging flow information depending on the inlining context, the algorithm is able to expose additional opportunities for inlining. This merging technique can be used in any program transformer justified by a polyvariant flow analysis. The revised algorithm is fully implemented in a production Scheme compiler.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Scalable size inliner for mobile applications (WIP);Proceedings of the 23rd ACM SIGPLAN/SIGBED International Conference on Languages, Compilers, and Tools for Embedded Systems;2022-06-14

2. Enhancing the Effectiveness of Inlining in Automatic Parallelization;International Journal of Parallel Programming;2021-08-06

3. A framework for call graph construction algorithms;ACM Transactions on Programming Languages and Systems;2001-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3