STADIA: Photonic Stochastic Gradient Descent for Neural Network Accelerators

Author:

Xia Chengpeng1ORCID,Chen Yawen1ORCID,Zhang Haibo1ORCID,Wu Jigang2ORCID

Affiliation:

1. University of Otago, New Zealand

2. Guangdong University of Technology, China

Abstract

Deep Neural Networks (DNNs) have demonstrated great success in many fields such as image recognition and text analysis. However, the ever-increasing sizes of both DNN models and training datasets make deep leaning extremely computation- and memory-intensive. Recently, photonic computing has emerged as a promising technology for accelerating DNNs. While the design of photonic accelerators for DNN inference and forward propagation of DNN training has been widely investigated, the architectural acceleration for equally important backpropagation of DNN training has not been well studied. In this paper, we propose a novel silicon photonic-based backpropagation accelerator for high performance DNN training. Specifically, a general-purpose photonic gradient descent unit named STADIA is designed to implement the multiplication, accumulation, and subtraction operations required for computing gradients using mature optical devices including Mach-Zehnder Interferometer (MZI) and Mircoring Resonator (MRR), which can significantly reduce the training latency and improve the energy efficiency of backpropagation. To demonstrate efficient parallel computing, we propose a STADIA-based backpropagation acceleration architecture and design a dataflow by using wavelength-division multiplexing (WDM). We analyze the precision of STADIA by quantifying the precision limitations imposed by losses and noises. Furthermore, we evaluate STADIA with different element sizes by analyzing the power, area and time delay for photonic accelerators based on DNN models such as AlexNet, VGG19 and ResNet. Simulation results show that the proposed architecture STADIA can achieve significant improvement by 9.7× in time efficiency and 147.2× in energy efficiency, compared with the most advanced optical-memristor based backpropagation accelerator.

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3