Fairness and discrimination in recommendation and retrieval

Author:

Ekstrand Michael D1,Burke Robin2,Diaz Fernando3

Affiliation:

1. Boise State University

2. University of Colorado

3. Microsoft Research, Montréal, Quebec

Funder

National Science Foundation

Publisher

ACM

Reference15 articles.

1. Alex Beutel Jilin Chen Tulsee Doshi Hai Qian Allison Woodruff Christine Luu Pierre Kreitmann Jonathan Bischof and Ed H. Chi. 2019. Putting Fairness Principles into Practice: Challenges Metrics and Improvements. CoRR abs/1901.04562 (2019). Alex Beutel Jilin Chen Tulsee Doshi Hai Qian Allison Woodruff Christine Luu Pierre Kreitmann Jonathan Bischof and Ed H. Chi. 2019. Putting Fairness Principles into Practice: Challenges Metrics and Improvements. CoRR abs/1901.04562 (2019).

2. Equity of Attention

3. Robin Burke. 2017. Multisided Fairness for Recommendation. (July 2017). arXiv:cs.CY/1707.00093 http://arxiv.org/abs/1707.00093 Robin Burke. 2017. Multisided Fairness for Recommendation. (July 2017). arXiv:cs.CY/1707.00093 http://arxiv.org/abs/1707.00093

4. Alexandra Chouldechova and Aaron Roth. 2018. The Frontiers of Fairness in Machine Learning. (Oct. 2018). arXiv:cs.LG/1810.08810 http://arxiv.org/abs/1810.08810 Alexandra Chouldechova and Aaron Roth. 2018. The Frontiers of Fairness in Machine Learning. (Oct. 2018). arXiv:cs.LG/1810.08810 http://arxiv.org/abs/1810.08810

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Understanding Biases in ChatGPT-based Recommender Systems: Provider Fairness, Temporal Stability, and Recency;ACM Transactions on Recommender Systems;2024-08-28

2. Enhancing Deliberation with Digital Democratic Innovations;Philosophy & Technology;2024-01-04

3. Longitudinal Impact of Preference Biases on Recommender Systems’ Performance;Information Systems Research;2023-11-21

4. Collaborative filtering algorithms are prone to mainstream-taste bias;Proceedings of the 17th ACM Conference on Recommender Systems;2023-09-14

5. Rectifying Unfairness in Recommendation Feedback Loop;Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval;2023-07-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3