Multi-auxiliary Augmented Collaborative Variational Auto-encoder for Tag Recommendation

Author:

Yi Jing1ORCID,Ren Xubin1ORCID,Chen Zhenzhong2ORCID

Affiliation:

1. Wuhan University, Wuhan, China

2. Wuhan University, China and Hubei Luojia Laboratory, Wuhan, China

Abstract

Recommending appropriate tags to items can facilitate content organization, retrieval, consumption, and other applications, where hybrid tag recommender systems have been utilized to integrate collaborative information and content information for better recommendations. In this article, we propose a multi-auxiliary augmented collaborative variational auto-encoder (MA-CVAE) for tag recommendation, which couples item collaborative information and item multi-auxiliary information, i.e., content and social graph, by defining a generative process. Specifically, the model learns deep latent embeddings from different item auxiliary information using variational auto-encoders (VAE), which could form a generative distribution over each auxiliary information by introducing a latent variable parameterized by deep neural network. Moreover, to recommend tags for new items, item multi-auxiliary latent embeddings are utilized as a surrogate through the item decoder for predicting recommendation probabilities of each tag, where reconstruction losses are added in the training phase to constrain the generation for feedback predictions via different auxiliary embeddings. In addition, an inductive variational graph auto-encoder is designed to infer latent embeddings of new items in the test phase, such that item social information could be exploited for new items. Extensive experiments on MovieLens and citeulike datasets demonstrate the effectiveness of our method.

Funder

National Natural Science Foundation of China

Special Fund of Hubei Luojia Laboratory

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Science Applications,General Business, Management and Accounting,Information Systems

Reference52 articles.

1. Bahare Askari, Jaroslaw Szlichta, and Amirali Salehi-Abari. 2021. Variational autoencoders for top-k recommendation with implicit feedback. In International ACM SIGIR Conference on Research and Development in Information Retrieval. 2061–2065.

2. A survey on tag recommendation methods;Belém Fabiano M.;J. Assoc. Inf. Sci. Technol.,2017

3. Variational inference: A review for statisticians;Blei David M.;J. Amer. Statist. Assoc.,2017

4. Jian Chen Lan Du and Leiyao Liao. 2022. Discriminative mixture variational autoencoder for semisupervised classification. IEEE Trans. Cybern. 52 5 (2022) 3032–3046.

5. A semisupervised recurrent convolutional attention model for human activity recognition;Chen Kaixuan;IEEE Trans. Neural Netw. Learn. Syst.,2020

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3