Deterministic and Energy-Optimal Wireless Synchronization

Author:

Barenboim Leonid1,Dolev Shlomi1,Ostrovsky Rafail2

Affiliation:

1. Department of Computer Science, Ben-Gurion University of the Negev, Israel

2. Department of Computer Science, UCLA, Los Angeles, CA

Abstract

We consider the problem of clock synchronization in a wireless setting where processors must minimize the number of times their radios are used to save energy. Energy efficiency is a central goal in wireless networks, especially if energy resources are severely limited, as occurs in sensor and ad hoc networks, and in many other settings. The problem of clock synchronization is fundamental and intensively studied in the field of distributed algorithms. In the current setting, the problem is to synchronize clocks of m processors that wake up in arbitrary time points, such that the maximum difference between wake-up times is bounded by a positive integer n . (Time intervals are appropriately discretized to allow communication of all processors that are awake in the same discrete time unit.) Currently, the best-known results for synchronization for single-hop networks of m processors is a randomized algorithm due to Bradonjic et al. [2009] of O (√ n / mpoly - log ( n )) radio use times per processor, and a lower bound of Ω (√ n / m ). The main open question left in their work is to close the poly-log gap between the upper and the lower bound, and to derandomize their probabilistic construction and eliminate error probability. This is exactly what we do in this article. That is, we show a deterministic algorithm with radio use of Θ (√ n / m ), which exactly matches the lower bound proven in Bradonjic et al. [2009] to a small multiplicative constant. Therefore, our algorithm is optimal in terms of energy efficiency and completely resolves a long sequence of works in this area [Bradonjic et al. 2009; Moscribroda et al. 2006; McGlynn and Borbash 2001; Polastre et al. 2004]. Moreover, our algorithm is optimal in terms of running time as well. To achieve these results, we devise a novel adaptive technique that determines the times when devices power their radios on and off. This technique may be of independent interest. In addition, we prove several lower bounds on the energy efficiency of algorithms for multihop networks. Specifically, we show that any algorithm for multihop networks must have radio use of Ω (√ n ) per processor. Our lower bounds hold even for specific kinds of networks, such as networks modeled by unit disk graphs and highly connected graphs. Our results imply that the simple deterministic algorithm devised for two-processor networks in Bradonjic et al. [2009] with efficiency O (√ n ) can be used in multihop networks, and it is the most efficient solution in terms of energy use.

Funder

Microsoft

Rita Altura Trust Chair in Computer Sciences

Seventh Framework Programme

Deutsche Telekom Stiftung

U.S. Air Force

VeriSign.com grant

Israeli Defense Secretary

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Poster: Synchronizing Devices with Minimal Data Exchange and Applications for Graph-Based SLAM;Proceedings of the Eighth ACM/IEEE Symposium on Edge Computing;2023-12-06

2. On optimal neighbor discovery;Proceedings of the ACM Special Interest Group on Data Communication;2019-08-19

3. Simple and Complete Resynchronization for Wireless Sensor Networks;IEICE Transactions on Communications;2019-04-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3