Taming Mona Lisa

Author:

Moubayed Samer Al1,Edlund Jens1,Beskow Jonas1

Affiliation:

1. KTH Royal Institute of Technology, Stockholm, Sweden

Abstract

The perception of gaze plays a crucial role in human-human interaction. Gaze has been shown to matter for a number of aspects of communication and dialogue, especially for managing the flow of the dialogue and participant attention, for deictic referencing, and for the communication of attitude. When developing embodied conversational agents (ECAs) and talking heads, modeling and delivering accurate gaze targets is crucial. Traditionally, systems communicating through talking heads have been displayed to the human conversant using 2D displays, such as flat monitors. This approach introduces severe limitations for an accurate communication of gaze since 2D displays are associated with several powerful effects and illusions, most importantly the Mona Lisa gaze effect, where the gaze of the projected head appears to follow the observer regardless of viewing angle. We describe the Mona Lisa gaze effect and its consequences in the interaction loop, and propose a new approach for displaying talking heads using a 3D projection surface (a physical model of a human head) as an alternative to the traditional flat surface projection. We investigate and compare the accuracy of the perception of gaze direction and the Mona Lisa gaze effect in 2D and 3D projection surfaces in a five subject gaze perception experiment. The experiment confirms that a 3D projection surface completely eliminates the Mona Lisa gaze effect and delivers very accurate gaze direction that is independent of the observer's viewing angle. Based on the data collected in this experiment, we rephrase the formulation of the Mona Lisa gaze effect. The data, when reinterpreted, confirms the predictions of the new model for both 2D and 3D projection surfaces. Finally, we discuss the requirements on different spatially interactive systems in terms of gaze direction, and propose new applications and experiments for interaction in a human-ECA and a human-robot settings made possible by this technology.

Funder

Seventh Framework Programme

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Human-Computer Interaction

Reference30 articles.

1. Functions of gaze in social interaction: Communication and monitoring

2. Argyle M. and Cook M. 1976. Gaze and Mutual Gaze. Cambridge University Press. Argyle M. and Cook M. 1976. Gaze and Mutual Gaze. Cambridge University Press.

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3