A Machine Learning Methodology for Cache Memory Design Based on Dynamic Instructions

Author:

Navarro Osvaldo1,Yudi Jones1,Hoffmann Javier1,Hernandez Hector Gerardo Muñoz2,Hübner Michael2

Affiliation:

1. Ruhr-University Bochum, Bochum, Germany

2. Brandenburg University of Technology, Cottbus, Germany

Abstract

Cache memories are an essential component of modern processors and consume a large percentage of their power consumption. Its efficacy depends heavily on the memory demands of the software. Thus, finding the optimal cache for a particular program is not a trivial task and usually involves exhaustive simulation. In this article, we propose a machine learning–based methodology that predicts the optimal cache reconfiguration for any given application, based on its dynamic instructions. Our evaluation shows that our methodology reaches 91.1% accuracy. Moreover, an additional experiment shows that only a small portion of the dynamic instructions (10%) suffices to reach 89.71% accuracy.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Consejo Nacional de Ciencia y Tecnología

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An analysis of cache configuration’s impacts on the miss rate of big data applications using gem5;Serbian Journal of Electrical Engineering;2024

2. Evaluating a Machine Learning-based Approach for Cache Configuration;2022 IEEE 13th Latin America Symposium on Circuits and System (LASCAS);2022-03-01

3. Critical analysis of cache memory performance concerning miss rate and power consumption;International Journal of Embedded Systems;2022

4. Self-aware Memory Management for Emerging Energy-efficient Architectures;2020 11th International Green and Sustainable Computing Workshops (IGSC);2020-10-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3