Affiliation:
1. Ruhr-University Bochum, Bochum, Germany
2. Brandenburg University of Technology, Cottbus, Germany
Abstract
Cache memories are an essential component of modern processors and consume a large percentage of their power consumption. Its efficacy depends heavily on the memory demands of the software. Thus, finding the optimal cache for a particular program is not a trivial task and usually involves exhaustive simulation. In this article, we propose a machine learning–based methodology that predicts the optimal cache reconfiguration for any given application, based on its dynamic instructions. Our evaluation shows that our methodology reaches 91.1% accuracy. Moreover, an additional experiment shows that only a small portion of the dynamic instructions (10%) suffices to reach 89.71% accuracy.
Funder
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Consejo Nacional de Ciencia y Tecnología
Publisher
Association for Computing Machinery (ACM)
Subject
Hardware and Architecture,Software
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献