MiSoSouP

Author:

Riondato Matteo1,Vandin Fabio2

Affiliation:

1. Amherst College, East Drive, Amherst, MA

2. Università di Padova, Via G. Gradenigo, Padova, Italy

Abstract

We present MiSoSouP, a suite of algorithms for extracting high-quality approximations of the most interesting subgroups, according to different popular interestingness measures, from a random sample of a transactional dataset. We describe a new formulation of these measures as functions of averages, that makes it possible to approximate them using sampling. We then discuss how pseudodimension, a key concept from statistical learning theory, relates to the sample size needed to obtain an high-quality approximation of the most interesting subgroups. We prove an upper bound on the pseudodimension of the problem at hand, which depends on characteristic quantities of the dataset and of the language of patterns of interest. This upper bound then leads to small sample sizes. Our evaluation on real datasets shows that MiSoSouP outperforms state-of-the-art algorithms offering the same guarantees, and it vastly speeds up the discovery of subgroups w.r.t. analyzing the whole dataset.

Funder

University of Padova

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SILVAN : Estimating Betweenness Centralities with Progressive Sampling and Non-uniform Rademacher Bounds;ACM Transactions on Knowledge Discovery from Data;2023-12-09

2. Estimation and update of betweenness centrality with progressive algorithm and shortest paths approximation;Scientific Reports;2023-10-10

3. Efficient Centrality Maximization with Rademacher Averages;Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2023-08-04

4. VC-dimension and Rademacher Averages of Subgraphs, with Applications to Graph Mining;2023 IEEE 39th International Conference on Data Engineering (ICDE);2023-04

5. MCRapper: Monte-Carlo Rademacher Averages for Poset Families and Approximate Pattern Mining;ACM Transactions on Knowledge Discovery from Data;2022-07-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3