TORUS

Author:

Sinha Roopak1ORCID,Dowdeswell Barry1,Zhabelova Gulnara2,Vyatkin Valeriy3

Affiliation:

1. Auckland University of Technology, Auckland, New Zealand

2. Luleå University of Technology, Luleå, Sweden

3. Luleå University of Technology and Aalto University, Helsinki, Finland

Abstract

Cyber-Physical Systems (CPS) contain intertwined and distributed software, hardware, and physical components to control complex physical processes. They find wide application in industrial systems, such as smart grid protection systems, which face increasingly complex communication and computation needs. Due to the scale and complexity of the interactions that occur within CPS, tracing requirements through to the system components and software code that implement them is often hard. Existing requirements management systems do not scale well, and traceability is difficult to implement and maintain in highly heterogeneous systems. However, the information trace that links provide is crucial for supporting testing and certification activities in safety-critical environments such as smart grids. The well-formed models of power systems provided by the IEC 61850 standard and the software design structure provided by the IEC 61499 Function Blocks standard can be leveraged to automate many traceability operations. We present Traceability of Requirements Using Splices (TORUS), a novel traceability framework for the development of large-scale safety-critical CPS. TORUS introduces splices , autonomous graph-based data structures that automatically create and manage trace links between requirements and components through the inevitable changes that occur during system development. The formal, graph-based structure of TORUS lends itself well to the development of sophisticated algorithms to automate the extraction of useful traceability information such as historical records and metrics for requirements coverage and component coupling. By capturing not only the current state of the system but also historical information, TORUS allows project teams to see a much richer view of the system and its artifacts. We apply TORUS to the development of a protection system for smart grid substations. In addition, through a number of experiments in splice creation, modification, and application of automated algorithms, we show that TORUS scales easily to large systems containing hundreds of thousands of requirements and system components and millions of possible trace links.

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Control and Optimization,Computer Networks and Communications,Hardware and Architecture,Human-Computer Interaction

Reference79 articles.

1. Survey of graph database models

2. Recovering traceability links between code and documentation

3. Enterprise Architect. 2010. Sparx Systems. (2010). Enterprise Architect. 2010. Sparx Systems. (2010).

4. Overcoming the traceability benefit problem

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3