DANA

Author:

Malekzadeh Mohammad1,Clegg Richard2,Cavallaro Andrea2,Haddadi Hamed1

Affiliation:

1. Imperial College London, UK

2. Queen Mary University of London, UK

Abstract

Motion sensors embedded in wearable and mobile devices allow for dynamic selection of sensor streams and sampling rates, enabling several applications, such as power management and data-sharing control. While deep neural networks (DNNs) achieve competitive accuracy in sensor data classification, DNN architectures generally process incoming data from a fixed set of sensors with a fixed sampling rate, and changes in the dimensions of their inputs cause considerable accuracy loss, unnecessary computations, or failure in operation. To address these limitations, we introduce a dimension-adaptive pooling (DAP) layer that makes DNNs flexible and more robust to changes in sensor availability and in sampling rate. DAP operates on convolutional filter maps of variable dimensions and produces an input of fixed dimensions suitable for feedforward and recurrent layers. Further, we propose a dimension-adaptive training (DAT) procedure for enabling DNNs that use DAP to better generalize over the set of feasible data dimensions at inference time. DAT comprises the random selection of dimensions during the forward passes and optimization with accumulated gradients of several backward passes. Combining DAP and DAT, we show how to transform existing non-adaptive DNNs into a Dimension-Adaptive Neural Architecture (DANA), while keeping the same number of parameters. Compared to existing approaches, our solution provides better average classification accuracy over the range of possible data dimensions at inference time and does not require up-sampling or imputation, thus reducing unnecessary computations. Experimental results on seven datasets (four benchmark real-world datasets for human activity recognition and three synthetic datasets) show that DANA prevents significant losses in classification accuracy of the state-of-the-art DNNs and, compared to baselines, it better captures correlated patterns in sensor data under dynamic sensor availability and varying sampling rates.

Funder

EPSRC

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture,Human-Computer Interaction

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Domain Adaptation for Sensor-Based Human Activity Recognition with a Graph Convolutional Network;Mathematics;2024-02-12

2. Human Activity Classification Using Recurrence Plot and Residual Network;2023 IEEE 11th Conference on Systems, Process & Control (ICSPC);2023-12-16

3. Privacy-aware Human Activity Recognition with Smart Glasses for Digital Therapeutics;Adjunct Proceedings of the 2023 ACM International Joint Conference on Pervasive and Ubiquitous Computing & the 2023 ACM International Symposium on Wearable Computing;2023-10-08

4. Data-driven Energy-efficient Adaptive Sampling Using Deep Reinforcement Learning;ACM Transactions on Computing for Healthcare;2023-07-31

5. A Trainable Open-Source Machine Learning Accelerometer Activity Recognition Toolbox: Deep Learning Approach;JMIR AI;2023-06-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3