Distributed Geometric Query Monitoring Using Prediction Models

Author:

Giatrakos Nikos1,Deligiannakis Antonios1,Garofalakis Minos1,Sharfman Izchak2,Schuster Assaf2

Affiliation:

1. Technical University of Crete, Greece

2. Technion, Israel

Abstract

Many modern streaming applications, such as online analysis of financial, network, sensor, and other forms of data, are inherently distributed in nature. An important query type that is the focal point in such application scenarios regards actuation queries, where proper action is dictated based on a trigger condition placed upon the current value that a monitored function receives. Recent work [Sharfman et al. 2006, 2007b, 2008] studies the problem of (nonlinear) sophisticated function tracking in a distributive manner. The main concept behind the geometric monitoring approach proposed there is for each distributed site to perform the function monitoring over an appropriate subset of the input domain. In the current work, we examine whether the distributed monitoring mechanism can become more efficient, in terms of the number of communicated messages, by extending the geometric monitoring framework to utilize prediction models. We initially describe a number of local estimators (predictors) that are useful for the applications that we consider and which have already been shown particularly useful in past work. We then demonstrate the feasibility of incorporating predictors in the geometric monitoring framework and show that prediction-based geometric monitoring in fact generalizes the original geometric monitoring framework. We propose a large variety of different prediction-based monitoring models for the distributed threshold monitoring of complex functions. Our extensive experimentation with a variety of real datasets, functions, and parameter settings indicates that our approaches can provide significant communication savings ranging between two times and up to three orders of magnitude, compared to the transmission cost of the original monitoring framework.

Funder

Seventh Framework Programme

Publisher

Association for Computing Machinery (ACM)

Subject

Information Systems

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. AutoMon: Automatic Distributed Monitoring for Arbitrary Multivariate Functions;Proceedings of the 2022 International Conference on Management of Data;2022-06-10

2. LDA classifier monitoring in distributed streaming systems;Journal of Parallel and Distributed Computing;2019-01

3. Lightweight Monitoring of Distributed Streams;ACM Transactions on Database Systems;2018-09-05

4. Scalable approximate query tracking over highly distributed data streams with tunable accuracy guarantees;Information Systems;2018-07

5. Violation Resolution in Distributed Stream Networks;Communications in Computer and Information Science;2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3