Concept location using formal concept analysis and information retrieval

Author:

Poshyvanyk Denys1,Gethers Malcom1,Marcus Andrian2

Affiliation:

1. College of William and Mary

2. Wayne State University

Abstract

The article addresses the problem of concept location in source code by proposing an approach that combines Formal Concept Analysis and Information Retrieval. In the proposed approach, Latent Semantic Indexing, an advanced Information Retrieval approach, is used to map textual descriptions of software features or bug reports to relevant parts of the source code, presented as a ranked list of source code elements. Given the ranked list, the approach selects the most relevant attributes from the best ranked documents, clusters the results, and presents them as a concept lattice, generated using Formal Concept Analysis. The approach is evaluated through a large case study on concept location in the source code on six open-source systems, using several hundred features and bugs. The empirical study focuses on the analysis of various configurations of the generated concept lattices and the results indicate that our approach is effective in organizing different concepts and their relationships present in the subset of the search results. In consequence, the proposed concept location method has been shown to outperform a standalone Information Retrieval based concept location technique by reducing the number of irrelevant search results across all the systems and lattice configurations evaluated, potentially reducing the programmers' effort during software maintenance tasks involving concept location.

Funder

Division of Computing and Communication Foundations

Publisher

Association for Computing Machinery (ACM)

Subject

Software

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The construction of multi-granularity generalized one-sided concept lattices;International Journal of Machine Learning and Cybernetics;2024-05-21

2. Object-oriented concept acquisition based on attribute topology;Journal of Intelligent & Fuzzy Systems;2024-03-05

3. Identifying Concepts in Software Projects;IEEE Transactions on Software Engineering;2023-07

4. Applications of natural language processing in software traceability: A systematic mapping study;Journal of Systems and Software;2023-04

5. Multilayer self‐attention residual network for code search;Concurrency and Computation: Practice and Experience;2023-02-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3