Hardware-accelerated Simulation-based Inference of Stochastic Epidemiology Models for COVID-19

Author:

Kulkarni Sourabh1ORCID,Krell Mario Michael2,Nabarro Seth3,Moritz Csaba Andras1

Affiliation:

1. University of Massachusetts Amherst, Massachusetts, USA

2. Graphcore, Palo Alto, CA, USA

3. Graphcore Research, Bristol, UK

Abstract

Epidemiology models are central to understanding and controlling large-scale pandemics. Several epidemiology models require simulation-based inference such as Approximate Bayesian Computation (ABC) to fit their parameters to observations. ABC inference is highly amenable to efficient hardware acceleration. In this work, we develop parallel ABC inference of a stochastic epidemiology model for COVID-19. The statistical inference framework is implemented and compared on Intel’s Xeon CPU, NVIDIA’s Tesla V100 GPU, Google’s V2 Tensor Processing Unit (TPU), and the Graphcore’s Mk1 Intelligence Processing Unit (IPU), and the results are discussed in the context of their computational architectures. Results show that TPUs are 3×, GPUs are 4×, and IPUs are 30× faster than Xeon CPUs. Extensive performance analysis indicates that the difference between IPU and GPU can be attributed to higher communication bandwidth, closeness of memory to compute, and higher compute power in the IPU. The proposed framework scales across 16 IPUs, with scaling overhead not exceeding 8% for the experiments performed. We present an example of our framework in practice, performing inference on the epidemiology model across three countries and giving a brief overview of the results.

Publisher

Association for Computing Machinery (ACM)

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Software

Reference34 articles.

1. Martín Abadi Ashish Agarwal Paul Barham Eugene Brevdo Zhifeng Chen Craig Citro Greg S. Corrado Andy Davis Jeffrey Dean Matthieu Devin Sanjay Ghemawat Ian Goodfellow Andrew Harp Geoffrey Irving Michael Isard Yangqing Jia Rafal Jozefowicz Lukasz Kaiser Manjunath Kudlur Josh Levenberg Dan Mané Rajat Monga Sherry Moore Derek Murray Chris Olah Mike Schuster Jonathon Shlens Benoit Steiner Ilya Sutskever Kunal Talwar Paul Tucker Vincent Vanhoucke Vijay Vasudevan Fernanda Viégas Oriol Vinyals Pete Warden Martin Wattenberg Martin Wicke Yuan Yu and Xiaoqiang Zheng. 2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Retrieved from http://tensorflow.org/.

2. Steven Abrams James Wambua Eva Santermans Lander Willem Elise Kuylen Pietro Coletti Pieter Libin Christel Faes Oana Petrof Sereina A. Herzog Philippe Beutels and Niel Hens. 2020. Modeling the early phase of the Belgian COVID-19 epidemic using a stochastic compartmental model and studying its implied future trajectories. Epidemics 35 (2021) 100449.

3. Approximate Bayesian Computation in Evolution and Ecology

4. An empirically adjusted approach to reproductive number estimation for stochastic compartmental models: A case study of two Ebola outbreaks

5. Accurate Methods for Approximate Bayesian Computation Filtering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design and implementation of FPGA-based hardware acceleration for Machine Learning using OpenCL: A case study on the K-Means algorithm;2024 International Conference on Control, Automation and Diagnosis (ICCAD);2024-05-15

2. Towards Reusable Building Blocks to Develop COVID-19 Simulation Models;2022 Winter Simulation Conference (WSC);2022-12-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3