Superpixel Region Merging Based on Deep Network for Medical Image Segmentation

Author:

Liu Hui1,Wang Haiou2,Wu Yan3,Xing Lei3

Affiliation:

1. Shandong University of Finance and Economics and Stanford University, Jinan, Shandong Province, China

2. Shandong University of Finance and Economics, Jinan, Shandong Province, China

3. Stanford University, CA, USA

Abstract

Automatic and accurate semantic segmentation of pathological structures in medical images is challenging because of noisy disturbance, deformable shapes of pathology, and low contrast between soft tissues. Classical superpixel-based classification algorithms suffer from edge leakage due to complexity and heterogeneity inherent in medical images. Therefore, we propose a deep U-Net with superpixel region merging processing incorporated for edge enhancement to facilitate and optimize segmentation. Our approach combines three innovations: (1) different from deep learning--based image segmentation, the segmentation evolved from superpixel region merging via U-Net training getting rich semantic information, in addition to gray similarity; (2) a bilateral filtering module was adopted at the beginning of the network to eliminate external noise and enhance soft tissue contrast at edges of pathogy; and (3) a normalization layer was inserted after the convolutional layer at each feature scale, to prevent overfitting and increase the sensitivity to model parameters. This model was validated on lung CT, brain MR, and coronary CT datasets, respectively. Different superpixel methods and cross validation show the effectiveness of this architecture. The hyperparameter settings were empirically explored to achieve a good trade-off between the performance and efficiency, where a four-layer network achieves the best result in precision, recall, F-measure, and running speed. It was demonstrated that our method outperformed state-of-the-art networks, including FCN-16s, SegNet, PSPNet, DeepLabv3, and traditional U-Net, both quantitatively and qualitatively. Source code for the complete method is available at https://github.com/Leahnawho/Superpixel-network.

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Theoretical Computer Science

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3