Is Machine Learning Necessary for Cloud Resource Usage Forecasting?

Author:

Christofidi Georgia1ORCID,Papaioannou Konstantinos1ORCID,Doudali Thaleia Dimitra1ORCID

Affiliation:

1. IMDEA Software Institute, Madrid, Spain

Funder

MCIN/AEI/10.13039/501100011033/, European Union NextGenerationEU/ PRTR

MCIN/AEI/10.13039/501100011033, European Union «NextGenerationEU»/PRTR

MCIN/AEI/10.13039/501100011033, ESF+

Publisher

ACM

Reference52 articles.

1. 2018. Alibaba Cluster Traces 2018 . Technical report at https://github.com/alibaba/clusterdata/blob/master/cluster-trace-v2018. 2018. Alibaba Cluster Traces 2018. Technical report at https://github.com/alibaba/clusterdata/blob/master/cluster-trace-v2018.

2. 2018. How (not) to use Machine Learning for time series forecasting: Avoiding the pitfalls. https://towardsdatascience.com/how-not-to-use-machine-learning-for-time-series-forecasting-avoiding-the-pitfalls-19f9d7adf424. 2018. How (not) to use Machine Learning for time series forecasting: Avoiding the pitfalls. https://towardsdatascience.com/how-not-to-use-machine-learning-for-time-series-forecasting-avoiding-the-pitfalls-19f9d7adf424.

3. 2019. Azure VM Traces. Technical report at https://github.com/Azure/AzurePublicDataset. 2019. Azure VM Traces. Technical report at https://github.com/Azure/AzurePublicDataset.

4. 2019. Time Series Analysis Visualization & Forecasting with LSTM. https://towardsdatascience.com/time-series-analysis-visualization-forecasting-with-lstm-77a905180eba. 2019. Time Series Analysis Visualization & Forecasting with LSTM. https://towardsdatascience.com/time-series-analysis-visualization-forecasting-with-lstm-77a905180eba.

5. George Amvrosiadis , Jun Woo Park , Gregory R. Ganger , Garth A. Gibson , Elisabeth Baseman , and Nathan DeBardeleben . 2018 . On the diversity of cluster workloads and its impact on research results . In 2018 USENIX Annual Technical Conference (USENIX ATC 18) . USENIX Association, Boston, MA, 533--546. https://www.usenix.org/conference/atc18/presentation/amvrosiadis George Amvrosiadis, Jun Woo Park, Gregory R. Ganger, Garth A. Gibson, Elisabeth Baseman, and Nathan DeBardeleben. 2018. On the diversity of cluster workloads and its impact on research results. In 2018 USENIX Annual Technical Conference (USENIX ATC 18). USENIX Association, Boston, MA, 533--546. https://www.usenix.org/conference/atc18/presentation/amvrosiadis

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Vertically Autoscaling Monolithic Applications with CaaSPER: Scalable C ontainer- a s- a - S ervice P erformance E nhanced R esizing Algorithm for the Cloud;Companion of the 2024 International Conference on Management of Data;2024-06-09

2. Toward Using Representation Learning for Cloud Resource Usage Forecasting;Proceedings of the 2024 Workshop on AI For Systems;2024-06-03

3. LCPTCN: Lightweight Temporal Convolutional Network with Cross-Group Pruning for Dynamic Load Forecasting;2024 International Conference on Cloud and Network Computing (ICCNC);2024-05-31

4. Do Predictors for Resource Overcommitment Even Predict?;Proceedings of the 4th Workshop on Machine Learning and Systems;2024-04-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3