Security challenges of the EPCglobal network

Author:

Fabian Benjamin1,Günther Oliver1

Affiliation:

1. Humboldt-Universitat zu Berlin, Berlin, Germany

Abstract

Introduction The "Internet of Things," once reality, will have to rely on a global IT infrastructure that provides information about all those "things" in a secure and reliable manner. The EPCglobal Network is a proposal for a widely distributed information system to offer such services. But it may introduce more challenges concerning security, privacy, and political control than was initially anticipated. If the vision of many RFID proponents becomes true, more and more common objects will soon acquire a cyber presence. Objects will be equipped with RFID tags containing identification data and possibly some additional information about the object in question (data on tag). To keep tag costs low, one may often just store an identifier and use it as a key to access databases containing the actual object information (data on network). This second approach is typical for "EPC tags"—RFID tags that aim to replace the conventional barcode system. They use an Electronic Product Code (EPC, see Figure 1), which is globally unique, as a key to retrieve information from the EPCglobal Network, envisioned as a large distributed system of databases. The EPC standard represents a numbering framework that is independent of specific hardware features, such as tag generation or specific radio frequency. The databases compromising the EPCglobal Network are to be run by manufacturers, logistic providers, retailers, or third parties, and can be accessed via special web services called EPC Information Services (EPCIS). The network architecture is designed and administered by the standardization consortium EPCglobal, which is a joint venture of GS1 U.S. (formerly Uniform Code Council) and GS1 (formerly EAN International). By improving the information flow, as objects pass from suppliers to manufacturers, distributors, retail stores, and customers, the EPCglobal Network aims to facilitate cooperation within supply chains and thus to make them more efficient. Once established, it could also be used to support a wide range of applications in the area of ubiquitous computing. An often-cited example is the "smart home," in which "intelligent" cupboards and fridges could be realized using RFID technology. By scanning the RFID tags on objects and using the EPCglobal Network for information retrieval, such devices can identify their current content and offer new services like food counseling or automated replenishing of goods. As a result of this broadened use of the EPCglobal Network, its security context would change from closed supply chains to the rather open environments of ubiquitous computing–just like the security context of the Internet was changed by moving from relatively closed groups of fellow researchers to the global environment it represents today. In this article, we first describe the EPCglobal Network architecture, as currently specified. We then discuss its security and privacy risks, as well as possible countermeasures. We conclude with suggestions on how to improve existing design proposals, once appropriate security and privacy requirements have been established.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference12 articles.

1. Looking up data in P2P systems

2. EPCglobal. EPC Information Services (EPCIS) Version 1.01 Specification. September 2007; www.epcglobalinc.org/standards/epcis/. EPCglobal. EPC Information Services (EPCIS) Version 1.01 Specification. September 2007; www.epcglobalinc.org/standards/epcis/.

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Potential Identity Resolution Systems for the Industrial Internet of Things: A Survey;IEEE Communications Surveys & Tutorials;2021

2. The Role of RFID in Green IoT: A Survey on Technologies, Challenges and a Way Forward;Advances in Science, Technology and Engineering Systems Journal;2021-01

3. A survey on subjecting electronic product code and non‐ID objects to IP identification;Engineering Reports;2020-05-10

4. Integration of Blockchain and Internet of Things;Handbook of Research on Blockchain Technology;2020

5. Decentralised Internet of Things;Studies in Big Data;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3