Creating and preserving locality of java applications at allocation and garbage collection times

Author:

Shuf Yefim1,Gupta Manish1,Franke Hubertus1,Appel Andrew2,Singh Jaswinder Pal2

Affiliation:

1. IBM T. J. Watson Research Center, Yorktown Heights, NY

2. Princeton University, Princeton, NJ

Abstract

The growing gap between processor and memory speeds is motivating the need for optimization strategies that improve data locality. A major challenge is to devise techniques suitable for pointer-intensive applications. This paper presents two techniques aimed at improving the memory behavior of pointer-intensive applications with dynamic memory allocation, such as those written in Java. First, we present an allocation time object placement technique based on the recently introduced notion of prolific (frequently instantiated) types. We attempt to co-locate, at allocation time, objects of prolific types that are connected via object references. Then, we present a novel locality based graph traversal technique. The benefits of this technique, when applied to garbage collection (GC), are twofold: (i) it improves the performance of GC due to better locality during a heap traversal and (ii) it restructures surviving objects in a way that enhances locality. On multiprocessors, this technique can further reduce overhead due to synchronization and false sharing. The experimental results, on a well-known suite of Java benchmarks (SPECjvm98 [26], SPECjbb2000 [27], and jOlden [4]), from an implementation of these techniques in the Jikes RVM [1], are very encouraging. The object co-allocation technique improves application performance by up to 21% (10% on average) in the Jikes RVM configured with a non-copying mark-and-sweep collector. The locality-based traversal technique reduces GC times by up to 20% (10% on average) and improves the performance of applications by up to 14% (6% on average) in the Jikes RVM configured with a copying semi-space collector. Both techniques combined can improve application performance by up to 22% (10% on average) in the Jikes RVM configured with a non-copying mark-and-sweep collector.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Online Application Guidance for Heterogeneous Memory Systems;ACM Transactions on Architecture and Code Optimization;2022-07-06

2. OJXPerf;Proceedings of the 44th International Conference on Software Engineering;2022-05-21

3. Improving program locality in the GC using hotness;Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation;2020-06-06

4. Evaluating the effectiveness of program data features for guiding memory management;Proceedings of the International Symposium on Memory Systems;2019-09-30

5. Cross-component garbage collection;Proceedings of the ACM on Programming Languages;2018-10-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3