Global Sparse Analysis Framework

Author:

Oh Hakjoo1,Heo Kihong1,Lee Wonchan1,Lee Woosuk1,Park Daejun1,Kang Jeehoon1,Yi Kwangkeun1

Affiliation:

1. Seoul National University, Seoul, Korea

Abstract

In this article, we present a general method for achieving global static analyzers that are precise and sound, yet also scalable. Our method, on top of the abstract interpretation framework, is a general sparse analysis technique that supports relational as well as nonrelational semantics properties for various programming languages. Analysis designers first use the abstract interpretation framework to have a global and correct static analyzer whose scalability is unattended. Upon this underlying sound static analyzer, analysis designers add our generalized sparse analysis techniques to improve its scalability while preserving the precision of the underlying analysis. Our method prescribes what to prove to guarantee that the resulting sparse version should preserve the precision of the underlying analyzer. We formally present our framework and show that existing sparse analyses are all restricted instances of our framework. In addition, we show more semantically elaborate design examples of sparse nonrelational and relational static analyses. We then present their implementation results that scale to globally analyze up to one million lines of C programs. We also show a set of implementation techniques that turn out to be critical to economically support the sparse analysis process.

Funder

Ministry of Science, ICT and Future Planning

Publisher

Association for Computing Machinery (ACM)

Subject

Software

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Precise Sparse Abstract Execution via Cross-Domain Interaction;Proceedings of the IEEE/ACM 46th International Conference on Software Engineering;2024-04-12

2. Research on the Quality of Automotive Electronic Software Based on Code Checking;2023 5th International Conference on Artificial Intelligence and Computer Applications (ICAICA);2023-11-28

3. Clustered Relational Thread-Modular Abstract Interpretation with Local Traces;Programming Languages and Systems;2023

4. Hierarchical Analysis of Loops With Relaxed Abstract Transformers;IEEE Transactions on Reliability;2020-03

5. Deterministic parallel fixpoint computation;Proceedings of the ACM on Programming Languages;2020-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3