A cost semantics for self-adjusting computation

Author:

Ley-Wild Ruy1,Acar Umut A.2,Fluet Matthew2

Affiliation:

1. Carnegie Mellon University, Pittsburgh, PA, USA

2. Toyota Technological Institute at Chicago, Chicago, IL, USA

Abstract

Self-adjusting computation is an evaluation model in which programs can respond efficiently to small changes to their input data by using a change-propagation mechanism that updates computation by re-building only the parts affected by changes. Previous work has proposed language techniques for self-adjusting computation and showed the approach to be effective in a number of application areas. However, due to the complex semantics of change propagation and the indirect nature of previously proposed language techniques, it remains difficult to reason about the efficiency of self-adjusting programs and change propagation. In this paper, we propose a cost semantics for self-adjusting computation that enables reasoning about its effectiveness. As our source language, we consider a direct-style λ-calculus with first-class mutable references and develop a notion of trace distance for source programs. To facilitate asymptotic analysis, we propose techniques for composing and generalizing concrete distances via trace contexts (traces with holes). We then show how to translate the source language into a self-adjusting target language such that the translation (1) preserves the extensional semantics of the source programs and the cost of from-scratch runs, and (2) ensures that change propagation between two evaluations takes time bounded by their relative distance. We consider several examples and analyze their effectiveness by considering upper and lower bounds.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Incremental Approximate Computing;Encyclopedia of Big Data Technologies;2019

2. Brief Announcement;Proceedings of the 29th ACM Symposium on Parallelism in Algorithms and Architectures;2017-07-24

3. A type theory for incremental computational complexity with control flow changes;ACM SIGPLAN Notices;2016-12-05

4. Refinement Types for Incremental Computational Complexity;Programming Languages and Systems;2015

5. Implicit self-adjusting computation for purely functional programs;Journal of Functional Programming;2014-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3