FRoC 2.0

Author:

Ahmed Ibrahim1ORCID,Zhao Shuze1,Meijers James1,Trescases Olivier1,Betz Vaughn1

Affiliation:

1. University of Toronto, Toronto, Ontario

Abstract

In earlier technology nodes, FPGAs had low power consumption compared to other compute chips such as CPUs and GPUs. However, in the 14nm technology node, FPGAs are consuming unprecedented power in the 100+W range, making power consumption a pressing concern. To reduce FPGA power consumption, several researchers have proposed deploying dynamic voltage scaling. While the previously proposed solutions show promising results, they have difficulty guaranteeing safe operation at reduced voltages for applications that use the FPGA hard blocks. In this work, we present the first DVS solution that is able to fully handle FPGA applications that use BRAMs. Our solution not only robustly tests the soft logic component of the application but also tests all components connected to the BRAMs. We extend a previously proposed CAD tool, FRoC, to automatically generate calibration bitstreams that are used to measure the application’s critical path delays on silicon. The calibration bitstreams also include testers that ensure all used SRAM cells operate safely while scaling V dd . We experimentally show that using our DVS solution we can save 32% of the total power consumed by a discrete Fourier transform application running with the fixed nominal supply voltage and clocked at the F max reported by static timing analysis.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Field-Programmable Gate Array Architecture;Handbook of Computer Architecture;2023

2. FODM: A Framework for Accurate Online Delay Measurement Supporting All Timing Paths in FPGA;IEEE Transactions on Very Large Scale Integration (VLSI) Systems;2022-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3