TeraHAC: Hierarchical Agglomerative Clustering of Trillion-Edge Graphs

Author:

Dhulipala Laxman1ORCID,Łącki Jakub2ORCID,Lee Jason2ORCID,Mirrokni Vahab2ORCID

Affiliation:

1. UMD & Google Research, Bethesda, MD, USA

2. Google Research, New York, NY, USA

Abstract

We introduce TeraHAC, a (1+ε)-approximate hierarchical agglomerative clustering (HAC) algorithm which scales to trillion-edge graphs. Our algorithm is based on a new approach to computing (1+ε)-approximate HAC, which is a novel combination of the nearest-neighbor chain algorithm and the notion of (1+ε)-approximate HAC. Our approach allows us to partition the graph among multiple machines and make significant progress in computing the clustering within each partition before any communication with other partitions is needed. We evaluate TeraHAC on a number of real-world and synthetic graphs of up to 8 trillion edges. We show that TeraHAC requires over 100x fewer rounds compared to previously known approaches for computing HAC. It is up to 8.3x faster than SCC, the state-of-the-art distributed algorithm for hierarchical clustering, while achieving 1.16x higher quality. In fact, TeraHAC essentially retains the quality of the celebrated HAC algorithm while significantly improving the running time.

Publisher

Association for Computing Machinery (ACM)

Reference62 articles.

1. Amir Abboud , Vincent Cohen-Addad , and Hussein Houdrouge . Subquadratic high-dimensional hierarchical clustering . In Advances in Neural Information Processing Systems (NeurIPS) , volume 32 , 2019 . Amir Abboud, Vincent Cohen-Addad, and Hussein Houdrouge. Subquadratic high-dimensional hierarchical clustering. In Advances in Neural Information Processing Systems (NeurIPS), volume 32, 2019.

2. Tyler Akidau , Slava Chernyak , and Reuven Lax . Streaming systems: the what, where, when, and how of large-scale data processing . 2018 . Tyler Akidau, Slava Chernyak, and Reuven Lax. Streaming systems: the what, where, when, and how of large-scale data processing. 2018.

3. Apache Software Foundation. Apache Beam. Apache Software Foundation. Apache Beam.

4. Multi-dimensional balanced graph partitioning via projected gradient descent

5. Distributed Balanced Partitioning via Linear Embedding

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Comprehensive analysis of clustering algorithms: exploring limitations and innovative solutions;PeerJ Computer Science;2024-08-29

2. TeraHAC: Hierarchical Agglomerative Clustering of Trillion-Edge Graphs (Abstract);Proceedings of the 2024 ACM Workshop on Highlights of Parallel Computing;2024-06-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3