Presentation-level Privacy Protection Techniques for Automated Face Recognition—A Survey

Author:

Hasan Md Rezwan1ORCID,Guest Richard1ORCID,Deravi Farzin1ORCID

Affiliation:

1. School of Engineering, University of Kent, UK

Abstract

The use of Biometric Facial Recognition (FR) systems have become increasingly widespread, especially since the advent of deep neural network-based architectures. Although FR systems provide substantial benefits in terms of security and safety, the use of these systems also raises significant privacy concerns. This article discusses recent advances in facial identity hiding techniques, focusing on privacy protection approaches that hide or protect facial biometric data before camera devices capture the data. Moreover, we also discuss the state-of-the-art methods used to evaluate such privacy protection techniques. The primary motivation of this survey is to assess the relative performance of facial privacy protection methods and identify open challenges and future work that needs to be considered in this research area.

Funder

European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science,Theoretical Computer Science

Reference83 articles.

1. AVG. 2015. AVG reveals invisibility glasses at Pepcom Barcelona. Retrieved from https://www.avg.com/en/signal/avg-reveals-invisibility-glasses-at-pepcom-barcelona.

2. Big Brother Watch. 2018. “Dangerous and inaccurate” police facial recognition exposed in new Big Brother Watch report. Retrieved from https://bigbrotherwatch.org.uk/2018/05/dangerous-and-inaccurate-police-facial-recognition-exposed-in-new-big-brother-watch-report/.

3. Wikipedia. 2021. Avant-garde. Retrieved from https://en.wikipedia.org/w/index.php?title=Avant-garde&oldid=1045792145. Page Version ID: 1045792145.

4. Wikipedia. 2021. History of facial recognition technology. Retrieved from https://en.wikipedia.org/w/index.php?title=Facial_recognition_system&oldid=1038849154. Accessed: 2021-01-10.

5. Tom B. Brown Dandelion Mané Aurko Roy Martín Abadi and Justin Gilmer. 2018. Adversarial patch. Retrieved from http://arxiv.org/abs/1712.09665.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3