Learning schema mappings

Author:

Cate Balder Ten1,Dalmau Víctor2,Kolaitis Phokion G.3

Affiliation:

1. University of California, Santa Cruz, CA

2. Universitat Pompeu Fabra, Barcelona, Spain

3. University of California, Santa Cruz and IBM Research--Almaden

Abstract

A schema mapping is a high-level specification of the relationship between a source schema and a target schema. Recently, a line of research has emerged that aims at deriving schema mappings automatically or semi-automatically with the help of data examples, that is, pairs consisting of a source instance and a target instance that depict, in some precise sense, the intended behavior of the schema mapping. Several different uses of data examples for deriving, refining, or illustrating a schema mapping have already been proposed and studied. In this article, we use the lens of computational learning theory to systematically investigate the problem of obtaining algorithmically a schema mapping from data examples. Our aim is to leverage the rich body of work on learning theory in order to develop a framework for exploring the power and the limitations of the various algorithmic methods for obtaining schema mappings from data examples. We focus on GAV schema mappings, that is, schema mappings specified by GAV (Global-As-View) constraints. GAV constraints are the most basic and the most widely supported language for specifying schema mappings. We present an efficient algorithm for learning GAV schema mappings using Angluin's model of exact learning with membership and equivalence queries. This is optimal, since we show that neither membership queries nor equivalence queries suffice, unless the source schema consists of unary relations only. We also obtain results concerning the learnability of schema mappings in the context of Valiant's well-known PAC (Probably-Approximately-Correct) learning model, and concerning the learnability of restricted classes of GAV schema mappings. Finally, as a byproduct of our work, we show that there is no efficient algorithm for approximating the shortest GAV schema mapping fitting a given set of examples, unless the source schema consists of unary relations only.

Funder

Ministerio de Ciencia e Innovación

Division of Information and Intelligent Systems

Publisher

Association for Computing Machinery (ACM)

Subject

Information Systems

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the non-efficient PAC learnability of conjunctive queries;Information Processing Letters;2024-01

2. Extremal Fitting Problems for Conjunctive Queries;Proceedings of the 42nd ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems;2023-06-18

3. Conjunctive Queries: Unique Characterizations and Exact Learnability;ACM Transactions on Database Systems;2022-11-06

4. On the Parameterized Complexity of Learning First-Order Logic;Proceedings of the 41st ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems;2022-06-12

5. Scalable and Usable Relational Learning With Automatic Language Bias;Proceedings of the 2021 International Conference on Management of Data;2021-06-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3