Personalized explanations for hybrid recommender systems
Author:
Affiliation:
1. UC Santa Cruz
2. Army Research Lab
3. University of Southern California
4. UC Santa Barbara
Funder
National Science Foundation
Publisher
ACM
Link
https://dl.acm.org/doi/pdf/10.1145/3301275.3302306
Reference40 articles.
1. G. Adomavicius N. Manouselis and Y. Kwon. 2015. Multi-Criteria Recommender Systems. Recommender Systems Handbook Second Edition Springer US. G. Adomavicius N. Manouselis and Y. Kwon. 2015. Multi-Criteria Recommender Systems. Recommender Systems Handbook Second Edition Springer US.
2. I. Andjelkovic D. Parra and J. O'Donovan. 2019. Moodplay: interactive music recommendation based on artists' mood similarity. International Journal of Human-Computer Studies 121. I. Andjelkovic D. Parra and J. O'Donovan. 2019. Moodplay: interactive music recommendation based on artists' mood similarity. International Journal of Human-Computer Studies 121.
3. S. Bach M. Broecheler B. Huang and L. Getoor. 2017. Hinge-loss markov random fields and probabilistic soft logic. Journal of Machine Learning Research. (JMLR'17) 18 109. S. Bach M. Broecheler B. Huang and L. Getoor. 2017. Hinge-loss markov random fields and probabilistic soft logic. Journal of Machine Learning Research. (JMLR'17) 18 109.
4. Y. Benjamini and Y. Hochberg. 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society. (JRSS '95) 18 109. Y. Benjamini and Y. Hochberg. 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society. (JRSS '95) 18 109.
5. How to Recommend?
Cited by 110 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Visualization for Recommendation Explainability: A Survey and New Perspectives;ACM Transactions on Interactive Intelligent Systems;2024-08-02
2. Dynamic Ridge Plot Sliders: Supporting Users' Understanding of the Item Space Structure and Feature Dependencies in Interactive Recommender Systems;Adjunct Proceedings of the 32nd ACM Conference on User Modeling, Adaptation and Personalization;2024-06-27
3. Balanced Explanations in Recommender Systems;Adjunct Proceedings of the 32nd ACM Conference on User Modeling, Adaptation and Personalization;2024-06-27
4. Toward Tone-Aware Explanations in Recommender Systems;Proceedings of the 32nd ACM Conference on User Modeling, Adaptation and Personalization;2024-06-22
5. Recent Developments in Recommender Systems: A Survey [Review Article];IEEE Computational Intelligence Magazine;2024-05
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3