Stream Aggregation with Compressed Sliding Windows

Author:

Geethakumari Prajith Ramakrishnan1ORCID,Sourdis Ioannis1ORCID

Affiliation:

1. Computer Science and Engineering Department, Chalmers University of Technology, Sweden

Abstract

High performance stream aggregation is critical for many emerging applications that analyze massive volumes of data. Incoming data needs to be stored in a sliding window during processing, in case the aggregation functions cannot be computed incrementally. Updating the window with new incoming values and reading it to feed the aggregation functions are the two primary steps in stream aggregation. Although window updates can be supported efficiently using multi-level queues, frequent window aggregations remain a performance bottleneck as they put tremendous pressure on the memory bandwidth and capacity. This article addresses this problem by enhancing StreamZip, a dataflow stream aggregation engine that is able to compress the sliding windows. StreamZip deals with a number of data and control dependency challenges to integrate a compressor in the stream aggregation pipeline and alleviate the memory pressure posed by frequent aggregations. In addition, StreamZip incorporates a caching mechanism for dealing with skewed-key distributions in the incoming data stream. In doing so, StreamZip offers higher throughput as well as larger effective window capacity to support larger problems. StreamZip supports diverse compression algorithms offering both lossless and lossy compression to integers as well as floating-point numbers. Compared to designs without compression, StreamZip lossless and lossy designs achieve up to 7.5× and 22× higher throughput, while improving the effective memory capacity by up to 5× and 23×, respectively.

Funder

Swedish Research Council

Swedish Foundation for Strategic Research

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3