The Next 700 Accelerated Layers

Author:

Vasilache Nicolas1,Zinenko Oleksandr2ORCID,Theodoridis Theodoros3,Goyal Priya4,Devito Zachary5,Moses William S.6,Verdoolaege Sven7,Adams Andrew5,Cohen Albert8ORCID

Affiliation:

1. Facebook AI Research, NY, USA

2. Inria and ENS, Paris, France

3. ETH Zürich, Zürich, Switzerland

4. Facebook AI Research, New York City, NY, USA

5. Facebook AI Research, Menlo Park, CA, USA

6. MIT CSAIL, Cambridge, MA, USA

7. Polly Labs 8 Facebook AI Research, Leuven, Belgium

8. Inria, ENS and Facebook AI Research, Paris, France

Abstract

Deep learning frameworks automate the deployment, distribution, synchronization, memory allocation, and hardware acceleration of models represented as graphs of computational operators. These operators wrap high-performance libraries such as cuDNN or NNPACK. When the computation does not match any predefined library call, custom operators must be implemented, often at high engineering cost and performance penalty, limiting the pace of innovation. To address this productivity gap, we propose and evaluate: (1) a domain-specific language with a tensor notation close to the mathematics of deep learning; (2) a Just-In-Time optimizing compiler based on the polyhedral framework; (3) carefully coordinated linear optimization and evolutionary algorithms to synthesize high-performance CUDA kernels; (4) the transparent integration of our flow into PyTorch and Caffe2, providing the fully automatic synthesis of high-performance GPU kernels from simple tensor algebra. The performance is comparable to, and often exceeds the performance of, highly tuned libraries.

Funder

Facebook to ETH Zürich

European Commission through the MNEMOSENE project

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Information Systems,Software

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. (De/Re)-Composition of Data-Parallel Computations via Multi-Dimensional Homomorphisms;ACM Transactions on Programming Languages and Systems;2024-05-22

2. Retargeting and Respecializing GPU Workloads for Performance Portability;2024 IEEE/ACM International Symposium on Code Generation and Optimization (CGO);2024-03-02

3. Modeling the Interplay between Loop Tiling and Fusion in Optimizing Compilers Using Affine Relations;ACM Transactions on Computer Systems;2023-11-30

4. HAOTuner: A Hardware Adaptive Operator Auto-Tuner for Dynamic Shape Tensor Compilers;IEEE Transactions on Computers;2023-11

5. High-Performance GPU-to-CPU Transpilation and Optimization via High-Level Parallel Constructs;Proceedings of the 28th ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel Programming;2023-02-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3