Stochastic-Depth Ambient Occlusion

Author:

Vermeer Jop1,Scandolo Leonardo1,Eisemann Elmar1

Affiliation:

1. Delft University of Technology, Delft, the Netherlands

Abstract

Ambient occlusion (AO) is a popular rendering technique that enhances depth perception and realism by darkening locations that are less exposed to ambient light (e.g., corners and creases). In real-time applications, screen-space variants, relying on the depth buffer, are used due to their high performance and good visual quality. However, these only take visible surfaces into account, resulting in inconsistencies, especially during motion. Stochastic-Depth Ambient Occlusion is a novel AO algorithm that accounts for occluded geometry by relying on a stochastic depth map, capturing multiple scene layers per pixel at random. Hereby, we efficiently gather missing information in order to improve upon the accuracy and spatial stability of conventional screen-space approximations, while maintaining real-time performance. Our approach integrates well into existing rendering pipelines and improves the robustness of many different AO techniques, including multi-view solutions.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Efficient Screen Space Ambient Occlusion Generation via Residual network;2023 4th International Conference on Computer Vision, Image and Deep Learning (CVIDL);2023-05-12

2. Post0-VR: Enabling Universal Realistic Rendering for Modern VR via Exploiting Architectural Similarity and Data Sharing;2023 IEEE International Symposium on High-Performance Computer Architecture (HPCA);2023-02

3. Screen space indirect lighting with visibility bitmask;The Visual Computer;2022-11-11

4. Stereo-consistent screen-space ambient occlusion;Proceedings of the ACM on Computer Graphics and Interactive Techniques;2022-05-04

5. Real-Time Ray-Traced Soft Shadows of Environmental Lighting by Conical Ray Culling;Proceedings of the ACM on Computer Graphics and Interactive Techniques;2022-05-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3